3,833 research outputs found

    Detection of subthreshold pulses in neurons with channel noise

    Full text link
    Neurons are subject to various kinds of noise. In addition to synaptic noise, the stochastic opening and closing of ion channels represents an intrinsic source of noise that affects the signal processing properties of the neuron. In this paper, we studied the response of a stochastic Hodgkin-Huxley neuron to transient input subthreshold pulses. It was found that the average response time decreases but variance increases as the amplitude of channel noise increases. In the case of single pulse detection, we show that channel noise enables one neuron to detect the subthreshold signals and an optimal membrane area (or channel noise intensity) exists for a single neuron to achieve optimal performance. However, the detection ability of a single neuron is limited by large errors. Here, we test a simple neuronal network that can enhance the pulse detecting abilities of neurons and find dozens of neurons can perfectly detect subthreshold pulses. The phenomenon of intrinsic stochastic resonance is also found both at the level of single neurons and at the level of networks. At the network level, the detection ability of networks can be optimized for the number of neurons comprising the network.Comment: 14 pages, 9 figure

    Multimodal transition and stochastic antiresonance in squid giant axons

    Full text link
    The experimental data of N. Takahashi, Y. Hanyu, T. Musha, R. Kubo, and G. Matsumoto, Physica D \textbf{43}, 318 (1990), on the response of squid giant axons stimulated by periodic sequence of short current pulses is interpreted within the Hodgkin-Huxley model. The minimum of the firing rate as a function of the stimulus amplitude I0I_0 in the high-frequency regime is due to the multimodal transition. Below this singular point only odd multiples of the driving period remain and the system is highly sensitive to noise. The coefficient of variation has a maximum and the firing rate has a minimum as a function of the noise intensity which is an indication of the stochastic coherence antiresonance. The model calculations reproduce the frequency of occurrence of the most common modes in the vicinity of the transition. A linear relation of output frequency vs. I0I_0 for above the transition is also confirmed.Comment: 5 pages, 9 figure

    Intrinsic noise induced resonance in presence of sub-threshold signal in Brusselator

    Full text link
    In a system of non-linear chemical reactions called the Brusselator, we show that {\it intrinsic noise} can be regulated to drive it to exhibit resonance in the presence of a sub-threshold signal. The phenomena of periodic stochastic resonance and aperiodic stochastic resonance, hitherto studied mostly with extrinsic noise, is demonstrated here to occur with inherent systemic noise using exact stochastic simulation algorithm due to Gillespie. The role of intrinsic noise in a couple of other phenomena is also discussed.Comment: 7 pages, 5 figure

    Preparation of (Pb,Ba)TiO3 powders and highly oriented thin films by a sol-gel process

    Get PDF
    Solid solution Pb1-xBaxTiO3, with particular emphasis on Pb0.5Ba0.5TiO3, was prepared using a sol-gel process incorporating lead acetate trihydrate, barium acetate, and titanium isopropoxide as precursors, acetylacetone (2,4 pentanedione) as a chelating agent, and ethylene glycol as a solvent. The synthesis procedure was optimized by systematically varying acetylacetone: Ti and H2O:Ti molar ratios and calcination temperature. The resulting effects on sol and powder properties were studied using thermogravimetric analysis/differential scanning calorimetry, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and x-ray diffraction (XRD). Crystallization of the perovskite structure occurred at a temperature as low as 450 °C. Thin films were prepared by spin coating on (100) MgO. Pyrolysis temperature and heating rate were varied, and the resultant film properties investigated using field-emission scanning electron microscopy, atomic force microscopy, and XRD. Under optimized conditions, highly oriented films were obtained at a crystallization temperature of 600 °C

    The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit

    Full text link
    Gravitomagnetism--a motional coupling of matter analogous to the Lorentz force in electromagnetism--has observable consequences for any scenario involving differing mass currents. Examples include gyroscopes located near a rotating massive body, and the interaction of two orbiting bodies. In the former case, the resulting precession of the gyroscope is often called ``frame dragging,'' and is the principal measurement sought by the Gravity Probe-B experiment. The latter case is realized in the earth-moon system, and the effect has in fact been confirmed via lunar laser ranging (LLR) to approximately 0.1% accuracy--better than the anticipated accuracy of the Gravity-Probe-B result. This paper shows the connnection between these seemingly disparate phenomena by employing the same gravitomagnetic term in the equation of motion to obtain both gyroscopic precession and modification of the lunar orbit. Since lunar ranging currently provides a part in a thousand fit to the gravitomagnetic contributions to the lunar orbit, this feature of post-Newtonian gravity is not adjustable to fit any anomalous result beyond the 0.1% level from Gravity Probe-B without disturbing the existing fit of theory to the 36 years of LLR data.Comment: 4 pages; accepted for publication in Physical Review Letter

    Confidential genetic testing and electronic health records: A survey of current practices among Huntington disease testing centers

    Get PDF
    BACKGROUND: Clinical care teams providing presymptomatic genetic testing often employ advanced confidentiality practices for documentation and result storage. However, patient requests for increased confidentiality may be in conflict with the legal obligations of medical providers to document patient care activities in the electronic health record (EHR). Huntington disease presents a representative case study for investigating the ways centers currently balance the requirements of EHRs with the privacy demands of patients seeking presymptomatic genetic testing. METHODS: We surveyed 23 HD centers (53% response rate) regarding their use of the EHR for presymptomatic HD testing. RESULTS: Our survey revealed that clinical care teams and laboratories have each developed their own practices, which are cumbersome and often include EHR avoidance. We found that a majority of HD care teams record appointments in the EHR (91%), often using vague notes. Approximately half of the care teams (52%) keep presymptomatic results of out of the EHR. CONCLUSION: As genetic knowledge grows, linking more genes to late-onset conditions, institutions will benefit from having professional recommendations to guide development of policies for EHR documentation of presymptomatic genetic results. Policies must be sensitive to the ethical differences and patient demands for presymptomatic genetic testing compared to those undergoing confirmatory genetic testing

    Dielectric Characterization of Coastal Cartilage Chondrocytes

    Get PDF
    BACKGROUND: Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy. METHODS: Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are compared with other cell types in order to comparatively assess the electrical nature of chondrocytes. RESULTS: The results suggest that electrical cell membrane characteristics of chondrocyte cells are close to cardiomyoblast cells, cells known to possess an array of active ion channels. The blocking effect of the non-specific ion channel blocker gadolinium is tested on chondrocytes with a significant reduction in both membrane capacitance and conductance. CONCLUSIONS: We have utilized a microfluidic chamber to mimic biomechanical events through changes in bioelectrochemistry and described the dielectric properties of chondrocytes to be closer to cells derived from electrically excitably tissues. GENERAL SIGNIFICANCE: The study describes dielectric characterization of human costal chondrocyte cells using physical tools, where results and methodology can be used to identify potential anomalies in bioelectrochemical responses that may lead to cartilage disorders

    Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realization of a quantum fully homomorphic encryption scheme. To demonstrate the versatility of a a quantum fully homomorphic encryption scheme, we further present a toy two-party secure computation task enabled by our scheme
    corecore